

New Layered Germanide Halides RE_2GeX_2 (RE = Y, Gd; X = Br, I)

Mar'yana Lukachuk, Reinhard K. Kremer, Hansjürgen Mattausch, and Arndt Simon*

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

Received December 18, 2006

The title compounds were synthesized from RE, REX₃, and Ge under an Ar atmosphere at 1200–1370 K. Y₂Gel₂ and Gd₂Gel₂ crystallize in space group $R\bar{3}m$ with lattice constants a = 4.2135(3) and 4.2527(1) Å and c = 31.480(2) and 31.657(1) Å, respectively. Gd₂GeBr₂ crystallizes in two modifications, the 1T-type (space group $P\bar{3}m1$; a = 4.1668(2) Å, c = 9.8173(6) Å) and the 3R-type (space group $R\bar{3}m$; a = 4.1442(9) Å, c = 29.487(7) Å). The structural motifs of RE₂GeX₂ compounds are Ge-centered slightly distorted RE₆ octahedra connected via their common edges and extending in the *a* and *b* directions. The resulting close-packed double layers are separated by halogen atoms. The electrical resistivity measurements revealed semiconductor behavior for Y₂Gel₂ and Gd₂Gel₂ and a metal–semiconductor transition for 1T-Gd₂GeBr₂. Magnetic susceptibility and heat capacity measurements show long-range magnetic ordering for Gd₂Gel₂ and 1T-Gd₂GeBr₂ at ~15 and ~13 K, respectively.

Introduction

A number of metal-rich rare-earth halides^{1–4} crystallize with layered structures resulting from two-dimensional condensation of RE₆ octahedra. These structures relate to those of the binary compounds ZrCl^{5,6} and ZrBr.⁷ Closepacked bilayers of metal atoms are sandwiched by layers of halogen atoms, forming slabs which are bonded via van der Waals interactions. The metal atom framework leaves voids for different interstitials Z.^{1–4,8–15} The resulting RE₂ZX₂

- Simon, A.; Mattausch, Hj.; Miller, G. J.; Bauhofer, W.; Kremer, R. K. In *Handbook on the Physics and Chemistry of Rare Earths*; Gschneidner, K. A., Jr., Eyring, L., Eds.; North Holland: Amsterdam, 1991; Vol 15, p 191.
- (2) Corbett, J. D. J. Chem. Soc., Dalton Trans. 1996, 5, 575.
- (3) Meyer, G. Chem. Rev. 1988, 88, 93.
- (4) Simon, A.; Mattausch, Hj.; Ryazanov, M.; Kremer, R. K. Z. Anorg. Allg. Chem. 2006, 632, 919.
- (5) Izmailovich, A. S.; Trojanov, S. I.; Tsirelnikov, V. I. Russ. J. Inorg. Chem. 1974, 19, 1597.
- (6) Adolphson, D. G.; Corbett, J. D. Inorg. Chem. 1976, 15, 1820.
- (7) Daake, R. L.; Corbett, J. D. Inorg. Chem. 1977, 16, 2029.
- (8) Hwu, S.-J.; Ziebarth, R. P.; von Winbush, S.; Ford, J. E.; Corbett, J. D. Inorg. Chem. 1986, 25, 283.
- (9) Schwanitz-Schüller, U.; Simon, A. Z. Naturforsch. 1985, 40b, 710.
- (10) Schleid, Th.; Meyer, G. Z. Anorg. Allg. Chem. 1987, 552, 90.
- (11) Mattausch, Hj.; Zheng, C.; Ryazanov, M.; Simon, A. Z. Anorg. Allg.
- *Chem.* **2005**, *631*, 302. (12) Mattausch, Hj.; Kremer, R. K.; Simon, A. Z. Anorg. Allg. Chem. **1995**, *621*, 1001.
- (13) Cockcroft, J. K.; Kremer, R. K.; Mattausch, Hj.; Raju, N. P.; Simon, A. J. Alloys Compd. 1992, 183, 241.
- (14) Mattausch, Hj.; Eger, R.; Simon, A. Z. Anorg. Allg. Chem. 1991, 579, 145.
- (15) Schleid, Th.; Meyer, G. Z. Kristallogr. 1994, 209, 371.

10.1021/ic062425d CCC: \$37.00 © 2007 American Chemical Society Published on Web 03/21/2007

compounds (X = halogen atom) crystallize in trigonal (1T) or rhombohedral (3R) types which differ in the stacking sequence of the slabs. For the 1T type, the translation period corresponds to one slab in the unit cell, whereas the unit cell contains three such slabs for the 3R type. Many RE₂ZX₂ compounds,^{8,10-12} depending on the synthesis temperature, were found to crystallize in both 1T and 3R types. Here, the synthesis, structure, and physical properties of three new rareearth metal germanide halides closely related to La₂GeI₂¹¹ are reported.

Experimental Section

Preparation. RE metal pieces (RE = Y, Gd) (Alfa Aesar, 99.99%), REX₃ (X = Br, I), and Ge (99.99%) were used as starting materials. Y and Gd were hydrogenated, crushed, and then dehydrogenated under dynamical vacuum ($\leq 10^{-5}$ mbar) at 1070 K (Mo boat, 24 h). The rare-earth trihalides, REX₃, were prepared from the reaction of the oxides (99.9%) with HX and NH₄X and purified twice by sublimation under high vacuum in Ta containers. All handling of the educts and products was carried out under purified Ar either in a glovebox or by using standard Schlenk technique.

Reactions were performed with appropriate mixtures of the starting materials in Ta tubes sealed under an Ar atmosphere, which were subsequently jacketed in silica glass ampules under ca. 10^{-2} mbar vacuum. The synthesis conditions are compiled in Table 1. The 3R type of Gd₂GeBr₂ could only be obtained with a yield of ca. 10%, which could be the result of a narrow temperature range of existence.

Very thin platelike crystals with gold or bronze color were observed for all products. EDX analyses of the reaction products,

^{*} To whom correspondence should be addressed. E-mail: A.Simon@ fkf.mpg.de.

Table 1. Experimental Conditions for the Syntheses of the RE_2GeX_2 Compounds

compound	educts	reaction temp (K)	time (days)	estimated yield (%)
Y ₂ GeI ₂	4Y, 2YI ₃ , 3Ge	1320	8	>90
Gd ₂ GeI ₂	4Gd, 2GdI ₃ , 3Ge	1370	8	90
Gd ₂ GeBr ₂ (1T)	5Gd, 3GdBr ₃ , 3Ge	1200	42	70
Gd ₂ GeBr ₂ (3R)	2Gd, GdBr ₃ , Ge	1220	12	~ 10

using a TESCAN scanning electron microscope with an Oxford EDX detector, confirmed the 2:1:2 atomic ratio of the component elements. All compounds react readily with air and water, resulting in strongly smelling oxidized or hydrolyzed products.

Structure Refinement. X-ray powder diffraction patterns were recorded on a STADI P powder diffractometer (Stoe, Darmstadt), using Ge-monochromatized Mo K α_1 radiation ($\lambda = 0.7093$ Å) with carefully ground samples enclosed in sealed glass capillaries. From the powder diffraction patterns, Y₂GeI₂ and Gd₂GeI₂ and the hightemperature form of Gd₂GeBr₂ were found to be isostructural with the 3R-type of Lu₂CCl₂,¹⁰ whereas the low-temperature form of Gd₂GeBr₂ is isostructural with the 1T-type of Gd₂CBr₂.⁹ Since the crystals of RE₂GeX₂ are extremely soft and stacked as thin layers, well-shaped specimens suitable for a single-crystal X-ray structure analysis were difficult to prepare. We therefore performed a Rietveld profile refinement using the *FullProf* package.¹⁶ In the refinement, the background was set manually and the reflection profiles were modeled using the pseudo-Voigt function. Although the samples were very well ground and mixed with glass powder to avoid texturing effects, enhanced intensities of the 00l and hhl reflections were found. A similar result is well-known from early investigations on ZrCl7 as well as on "t-GdCl" and "t-TbCl"17 (which were later found out to be hydride chlorides). The effect is only observed with the ZrCl-type layer stacking and not with that of ZrBr. It is obviously due to mechanical introduction of layer disorder.

The plots of the final Rietveld refinements are shown in Figure 1, and the refinement parameters for Y₂GeI₂, Gd₂GeI₂, and 1T-Gd₂GeBr₂ are summarized in Table 2. Because of the small yield of 3R-Gd₂GeBr₂, only the lattice parameters (a = 4.1442(9) Å and c = 29.487(7) Å) could be calculated from a least-squares fit of the powder diffraction data of the selected phase.

The crystallographic information, including the fractional coordinates and selected bond lengths of Y_2GeI_2 , Gd_2GeI_2 , and $1T-Gd_2GeBr_2$, is listed in Tables 2–4.

Physical Properties. For the measurements of the electrical conductivity, the polycrystalline samples were pressed into pellets of 5 mm diameter and ca. 2 mm in thickness. The conventional four-contact van der Pauw method¹⁸ was used. The magnetic susceptibilities of Gd₂GeI₂ and Gd₂GeBr₂ were measured with a MPMS SQUID magnetometer (Quantum Design) using sample quantities of ca. 20 mg. Heat capacities were measured in a PPMS system (Quantum Design) on pressed pellets of ~20 mg. All measurements were carried out on pure RE₂GeX₂ phases selected under an optical microscope and characterized by X-ray powder diffraction.

Results and Discussion

The 1T-Gd₂GeBr₂ crystallizes in space group P3m1 (Figure 2, left). The Br–Gd–Ge–Gd–Br slabs are arranged

(18) van der Pauw, L. Philips Res. Rep. 1958, 13, 1.

Figure 1. Rietveld refinement plots for Y_2GeI_2 , Gd_2GeI_2 , and 1T- Gd_2 - $GeBr_2$; observed intensities indicated with open circles, calculated patterns with solid lines. The vertical bars indicate the Bragg positions; the difference between observed and calculated patterns is drawn below.

in a close-packing sequence $aB\gamma Ab$ along [001]. Y₂GeI₂, Gd₂-GeI₂, and 3R-Gd₂GeBr₂ crystallize in the rhombohedral space group $R\bar{3}m$ (Figure 2, right). Their structure consists of the same types of slabs as those in Gd₂GeBr₂, but every next layer is shifted by $^{2}/_{3}$ $^{1}/_{3}$ relative to the previous one. This results in a tripling of the *c* lattice parameter and rhombohedral symmetry. The close-packing sequence is $aB\gamma Ab$ $cA\beta Ca \ bC\alpha Bc$.

⁽¹⁶⁾ Rodriguez-Carvajal, J. FullProf.2k, version 2.70; CEA-CNRS: Gifsur-Yvette, France, 2004.

 ⁽¹⁷⁾ Mattausch, Hj.; Simon, A.; Holzer, N.; Eger, R. Z. Anorg. Allg. Chem. 1980, 466, 7.

Layered Germanide Halides

Table 2. Crystal Structure Data and Rietveld Refinement Parameters for Y₂I₂Ge, Gd₂I₂Ge, and 1T-Gd₂Br₂Ge^a

empirical formula	Y ₂ GeI ₂	Gd ₂ GeI ₂	1T-Gd ₂ GeBr ₂
fw	504.23	640.91	546.91
temp (K)	293(2)	293(2)	293(2)
wavelength (Å)	0.7093	0.7093	0.7093
cryst syst	rhombe	trigonal	
space group	$R\overline{3}m$	$R\overline{3}m$	$P\overline{3}m1$
unit cell dimens			
a (Å)	4.2135(3)	4.2527(1)	4.1668(2)
<i>c</i> (Å)	31.480(2)	31.657(1)	9.8173(6)
volume(Å ³), Z	484.00(5), 3	495.83(3), 3	147.61(1), 1
density (calcd) (g/cm ³)	5.19	6.44	6.15
no. of collected points, N	5800	5800	5800
no. of reflns	265	267	238
no of refined params, P	17	17	17
S	1.55	3.10	2.02
final R indices			
Rp	0.0179	0.0545	0.0551
$\hat{R_{wp}}$	0.0242	0.0706	0.0734
$\hat{R_{exp}}$	0.0155	0.0227	0.0363
$R_{\rm B}$	0.1064	0.0607	0.0726

 $\label{eq:alpha} \begin{array}{l} {}^{a}R_{\rm p} = \sum |y_{\rm o} - y_{\rm c}|/\sum |y_{\rm o}|, R_{\rm wp} = [\sum w|y_{\rm o} - y_{\rm c}|^2 \sum w|y_{\rm o}|^2]^{1/2}, R_{\rm exp} = [(N - P)/\sum wy_{\rm o}^2]^{1/2}, R_{\rm B} = \sum |I_{\rm o} - I_{\rm c}|/\sum |I_{\rm o}|, S = R_{\rm wp}/R_{\rm exp}. \end{array}$

Table 3. Atomic Coordinates and Isotropic Displacement Parameters $(Å^2)$ for Y_2GeI_2 , Gd_2GeI_2 , and 1T- Gd_2GeBr_2

atom	Wyckoff position	x	у	Z	В
$Y_2GeI_2(R\overline{3}m)$					
Y	6 <i>c</i>	1/3	2/3	0.0499(1)	1.56(7)
Ι	6 <i>c</i>	2/3	1/3	0.11287(6)	1.85(5)
Ge	3 <i>a</i>	0	0	0	1.5(1)
$Gd_2GeI_2(R\overline{3}m)$					
Gd	6 <i>c</i>	1/3	2/3	0.04993(3)	1.52(2)
Ι	6 <i>c</i>	$^{2}/_{3}$	1/3	0.11330(3)	1.89(3)
Ge	3 <i>a</i>	0	0	0	1.55(5)
$1T-Gd_2GeBr_2(P\overline{3}m1)$					
Gd	2d	1/3	2/3	0.1657(3)	1.79(5)
Br	2d	1/3	2/3	0.6579(4)	1.21(8)
Ge	1a	0	0	0	1.2(1)

Table 4. Interatomic Distances (Å) for $Y_2GeI_2,\,Gd_2GeI_2,\,and\,1T\text{-}Gd_2GeBr_2$

	Y_2GeI_2	Gd_2GeI_2	$1T-Gd_2GeBr_2$
RE-RE	3.972(4),	4.003(1),	4.046(3),
	4.2135(3)	4.2527(1)	4.1668(2)
RE-X	3.139(2)	3.1706(8)	2.964(3)
RE-Ge	2.895(2)	2.9201(5)	2.904(2)
X-X	4.170(2),	4.177(1),	3.924(4),
	4.2135(3)	4.2527(1)	4.1668(2)
X-Ge	4.306(2)	4.3466(8)	4.131(3)
Ge-Ge	4.2135(3)	4.2527(1)	4.1668(2)

Since Y_2 GeI₂ and Gd₂GeI₂ are isostructural and have the same stacking sequence with respect to the layers as that observed for Gd₂GeBr₂, we describe the interatomic distances only for 1T-Gd₂GeBr₂. The closest Gd–Gd contact is found between the layers (4.05 Å), and it is much longer than the average Gd–Gd distance of 3.60 Å in *hcp* Gd.¹⁹ The metal–metal distance within these layers is somewhat larger (4.17 Å, *a* lattice parameter). In the isotypic Gd₂CBr₂ compound,⁹ the Gd–Gd distances (3.43 and 3.82 Å) are much shorter due to the smaller atomic radius of the C atom compared with that of Ge. Despite these differences, the *c* lattice parameters in Gd₂CBr₂ and Gd₂GeBr₂ are almost equal and amount to 9.82 Å.

Figure 2. Projections of the $1T\mathchar`-Gd_2GeBr_2$ (left) and Gd_2GeI_2 (right) structures.

The shortest distance between the neighboring Ge atoms is 4.17 Å, which is too large for forming Ge–Ge bonds. The Gd–Ge distance of 2.90 Å is only slightly longer than the sum of the covalent radii of Gd and Ge (2.83 Å).²⁰ As Ge atoms are not bonded to each other, the charge distribution for the RE₂GeX₂ compounds can be approximated in an ionic formulation as $(RE^{3+})_2Ge^{4-}(X^-)_2$ with no valence electrons in the RE framework.

Electrical and Magnetic Properties. Figure 3 shows the results of resistivity measurements for Y2GeI2, Gd2GeI2, and 1T-Gd₂GeBr₂. The temperature dependence of Y₂GeI₂ and Gd₂GeI₂ indicates semiconducting behavior in the entire temperature range. The room-temperature resistivity of Y₂-GeI₂ amounts to about 4 Ω cm and increases by 8 orders of magnitude on cooling to low temperatures. The roomtemperature resistivity of Gd₂GeI₂ is 1 order of magnitude smaller (0.1 Ω cm) and increases by 4 orders of magnitude upon lowering of the temperature. 1T-Gd₂GeBr₂ exhibits a semiconducting behavior only at temperatures below ~ 150 K with an increase of the resistivity by 2 orders of magnitude. A linear increase of the resistivity above 150 K (see insets of Figure 3) indicates a transition to metallic characteristics. 1T-Gd₂GeBr₂ has the smallest room-temperature resistivity among the title compounds, which amounts to \sim 35 m Ω cm. The ρ (logarithmic scale) vs 1/T dependences for the title compounds (Figure 3) between approximately 25 and 100 K are almost linear, indicating a thermally activated conduction. The analyses with an Arrhenius law, $\rho(T) \propto \exp(-E_A/$ $k_{\rm B}T$), yield activation energies, $E_{\rm A}$, of 43, 10, and 3.3 meV for Y₂GeI₂, Gd₂GeI₂, and 1T-Gd₂GeBr₂, respectively.

The magnetic susceptibilities of Gd₂GeI₂ and 1T-Gd₂GeBr₂ (Figure 4) follow a Curie–Weiss law. The experimental effective magnetic moments obtained from the high-temperature slopes of the $1/\chi$ vs *T* plots amount to 7.98 and

(20) Emsley, J. The Elements; Oxford University Press: Oxford, 1989.

Figure 3. Temperature dependence of the resistivities for Y_2GeI_2 , Gd_2 -GeI₂, and 1T-Gd₂GeBr₂ (from top to bottom).

7.72 $\mu_{\rm B}$ for Gd₂GeI₂ and 1T-Gd₂GeBr₂, respectively. These values are in good agreement with the expected effective moment of 7.94 $\mu_{\rm B}$ for Gd³⁺ with a ${}^{8}S_{7/2}$ ground state. The paramagnetic Curie temperatures are negative for both compounds, indicating predominant antiferromagnetic exchange interaction, and they amount to -14 and -11 K for Gd₂GeI₂ and 1T-Gd₂GeBr₂, respectively. Indeed, an antiferromagnetic ordering is indicated by a shallow maximum in the susceptibility with a Néel temperature $T_{\rm N} \approx 15$ K when sufficiently small external fields of 0.01 or 0.1 T are applied. The maximum is suppressed, and steep ferromagnetic-like increases of the susceptibilities with saturation effects occur as the magnetic field is increased.

The heat capacity data for Gd₂GeI₂ and 1T-Gd₂GeBr₂ (Figure 5a) show λ -type anomalies at ~15 K for Gd₂GeI₂ and ~13 K for 1T-Gd₂GeBr₂, indicating long-range magnetic ordering. Comparison with the heat capacity of the nonmagnetic compound Y₂GeI₂ reveals that the magnetic contributions to the specific heat for Gd₂GeI₂ and 1T-Gd₂GeBr₂ are dominant below ~10 K and extend up to ~70 K. However, the majority of the magnetic contributions is concentrated

Figure 4. Magnetic susceptibilities of Gd_2GeI_2 and 1T- Gd_2GeBr_2 . The insets show the inverse magnetic susceptibilities.

Figure 5. Heat capacities of Gd₂GeI₂, 1T-Gd₂GeBr₂, and Y₂GeI₂ presented as C_p/T vs T (a) or C_p vs T (b). The dashed lines in part b indicate a power-law behavior $C_p \propto T^2$ or $C_p \propto T^{3/2}$.

below the ordering temperatures. These contributions are stronger for 1T-Gd₂GeBr₂ than for Gd₂GeI₂. Accordingly, the magnitude of the λ anomaly of 1T-Gd₂GeBr₂ is somewhat reduced, and a large fraction of the magnetic entropy is shifted below the ordering temperature. Similar low-temperature ($T < T_N$) features in the magnetic heat capacity were observed, e.g., in GdIH_x (0.66 $\leq x \leq 0.86$).²¹ We attribute

⁽²¹⁾ Ryazanov, M.; Kremer, R. K.; Simon, A.; Mattausch, Hj. Phys. Rev. 2006, B73, 035114.

Figure 6. Sommerfeld plot Y₂GeI₂ below 4 K.

these features to complex-canted antiferromagnetic order as a result of the competing interactions in the triangular RE layers.

Below the ordering temperature, the magnetic heat capacity of Gd₂GeI₂ follows a T^2 behavior (Figure 5b), which can be attributed to the magnon heat capacity of a twodimensional antiferromagnetic system. In contrast, the magnetic contribution to the heat capacity of 1T-Gd₂GeBr₂ decreases with a power-law behavior $C_{\text{mag}} \propto T^{3/2}$ common for spin waves in a three-dimensional ferromagnet.

The heat capacity data of Y_2 GeI₂ between 2 and 4 K are presented as a C_p/T vs T^2 plot in Figure 6. In this temperature range, the lattice and electronic contributions can be described by the sum of a Debye βT^3 term and a linear Sommerfeld γT term according to

$$C_p = \gamma T + \beta T^3 \tag{1}$$

with the Sommerfeld coefficient $\gamma = 3.0(6) \times 10^{-3}$ J/mol K² and $\beta = 2.36(8) \times 10^{-3}$ J/mol K⁴. The coefficient β corresponds to a Debye temperature of $\Theta_D(0) = 160$ K. This value lies well in the range of similar compounds, e.g., YIH_{0.8} $\Theta_D(0) = 220$ K.²² A linear contribution to the heat capacity is unexpected in view of the semiconducting behavior of Y₂GeI₂. It may be due to disorder or some doping-induced charge carriers. For example, in Si single crystals, similar values were observed, which were ascribed to a doping level of 10^{20} atoms/cm³.^{23,24}

- (22) Ryazanov, M.; Kremer, R. K.; Simon, A.; Mattausch, Hj., unpublished results.
- (23) Gibin, A.; Devyatykh, G. G.; Gusev, A. V.; Kremer, R. K.; Cardona, M.; Pohl, H.-J. Solid State Commun. 2005, 133, 569.
- (24) Keesom, P. H.; Seidel, M. Phys. Rev. 1959, 113, 33.

Figure 7. Temperature dependence of the magnetic entropies, S_{mag} , of Gd₂GeI₂ and 1T-Gd₂GeBr₂.

The spin entropies $S_{mag}(T)$ of Gd₂GeI₂ and 1T-Gd₂GeBr₂, calculated according to

$$S(T) = \int_0^T \frac{C_{\text{mag}}(T')}{T'} \,\mathrm{d}T' \tag{2}$$

are plotted in Figure 7. To obtain the magnetic contributions C_{mag} for the Gd compounds, C_p of Y_2 GeI₂ was subtracted as a reference for the phonon contributions. The different atomic masses of Gd and Y and the different stacking sequences in the crystal structures of Gd₂GeI₂ and 1T-Gd₂GeBr₂ will certainly cause some changes in the phonon spectrum and a slight difference of the lattice heat capacities. However, as can be seen in Figure 5b, the heat capacity of Y_2 GeI₂ at high temperatures approaches rather well the C_p values of Gd_2GeI_2 and 1T-Gd₂GeBr₂ despite the Y-Gd mass difference. To compensate for the mass differences of Y and Gd, an empirical factor of 1.09 was applied to adjust the heat capacities of Y₂GeI₂ and Gd₂GeX₂ at high temperature, where no magnetic contributions are present. The entropy increases steeply and levels off at temperatures ~ 15 K, where the magnetic orderings occur. About 75% of the magnetic entropy is removed below T_N , indicating that short-range magnetic ordering effects with sizable contributions to the heat capacities above $T_{\rm N}$ are not observed. The saturation value of the entropy is very close to $2R \ln 8$, as expected for a system with two Gd³⁺ ($S = \frac{7}{2}$) atoms per formula unit.

Acknowledgment. We thank E. Brücher and G. Siegle for the magnetization and resistivity measurements.

Supporting Information Available: Three CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

IC062425D